Nature:AI测血,肺癌早现!科学家开发全新AI血液测试

2020-03-30 生物探索 生物探索

美国多家机构组成的大型研究团队发现,可以利用机器学习来检测人类早期肺癌。该小组在《Nature》杂志上发表的论文中描述了他们的工作,包括测试机器学习系统及其在血液样本中发现循环肿瘤DNA(ctDNA)

美国多家机构组成的大型研究团队发现,可以利用机器学习来检测人类早期肺癌。该小组在《Nature》杂志上发表的论文中描述了他们的工作,包括测试机器学习系统及其在血液样本中发现循环肿瘤DNA(ctDNA)的能力


https://doi.org/10.1038/s41586-020-2140-0

肺癌是最致命的癌症之一,与许多其他癌症一样,发现得越早,患者的生存机会就越大。然而当前检测它的唯一方法是通过CT扫描,不仅成本高昂,而且还有很高的假阳性率,因此医学研究人员一直致力于开发可以在早期阶段检测出肺癌的血液检测方法,包括扫描血液样本中的ctDNA片段。在这项新工作中,研究人员将目光投向了机器学习——先前的研究已经表明,机器学习在鉴别早期乳腺癌和其他癌症方面是有用的。

文章中,研究人员开发并前瞻性地验证了一种称为“血浆中肺癌可能性”(Lung-CLiP)的机器学习方法,该方法可以很好地将早期肺癌患者与风险匹配的对照区分开,实现与肿瘤信息ctDNA检测相似的性能,并可调整检测的特异性,以促进不同的临床应用。这一发现确立了cfDNA在肺癌筛查中的潜力,并强调了基于cfDNA的筛查研究中风险匹配病例和对照的重要性。


血浆中肺癌可能性(Lung-CLiP)方法的开发

在测试过程中,该系统发现了63%的1期肺癌患者的肿瘤,虽然没有CT扫描那么好,但可能足以作为被认为是肺癌高危人群的初始筛查。研究人员指出,目前许多这样的患者根本没有接受筛查,如果病人的检测结果呈阳性,医生会建议他们进行更复杂的检测。

这种筛查每年可以延长600至1200人的寿命,未来研究人员考虑将Lung-CLiP与LDCT整合或与其他循环生物标记物进行分析以进一步提高性能,此外,通过修改考虑的高危人群,并结合其他类型癌症的分子特征,希望可以开发适用于多种恶性肿瘤的方法。

原始出处:

Jacob J. Chabon, Emily G. Hamilton ]Maximilian Diehn, et.al. Integrating genomic features for non-invasive early lung cancer detection. Nature 25 March 2020

评论区 (3)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=958974, encodeId=2c529589e47f, content=很重要的发现, beContent=null, objectType=article, channel=null, level=null, likeNumber=97, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20200529/3611e9bb629c4e5b81fbd8ce784b06cc/128487eae357460bb98f67d86230c218.jpg, createdBy=ab235268530, createdName=神盾医疗局局长Jack, createdTime=Wed Apr 21 08:44:35 CST 2021, time=2021-04-21, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1884203, encodeId=a5ad188420300, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=67, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Mon Apr 06 02:14:39 CST 2020, time=2020-04-06, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1951126, encodeId=6e27195112602, content=<a href='/topic/show?id=580a89302c6' target=_blank style='color:#2F92EE;'>#血液测试#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=72, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=89302, encryptionId=580a89302c6, topicName=血液测试)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=e12a151, createdName=yangeasy, createdTime=Sun Feb 07 23:14:39 CST 2021, time=2021-02-07, status=1, ipAttribution=)]
    2021-04-21 神盾医疗局局长Jack

    很重要的发现

    0

  2. [GetPortalCommentsPageByObjectIdResponse(id=958974, encodeId=2c529589e47f, content=很重要的发现, beContent=null, objectType=article, channel=null, level=null, likeNumber=97, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20200529/3611e9bb629c4e5b81fbd8ce784b06cc/128487eae357460bb98f67d86230c218.jpg, createdBy=ab235268530, createdName=神盾医疗局局长Jack, createdTime=Wed Apr 21 08:44:35 CST 2021, time=2021-04-21, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1884203, encodeId=a5ad188420300, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=67, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Mon Apr 06 02:14:39 CST 2020, time=2020-04-06, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1951126, encodeId=6e27195112602, content=<a href='/topic/show?id=580a89302c6' target=_blank style='color:#2F92EE;'>#血液测试#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=72, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=89302, encryptionId=580a89302c6, topicName=血液测试)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=e12a151, createdName=yangeasy, createdTime=Sun Feb 07 23:14:39 CST 2021, time=2021-02-07, status=1, ipAttribution=)]
    2020-04-06 liye789132251
  3. [GetPortalCommentsPageByObjectIdResponse(id=958974, encodeId=2c529589e47f, content=很重要的发现, beContent=null, objectType=article, channel=null, level=null, likeNumber=97, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20200529/3611e9bb629c4e5b81fbd8ce784b06cc/128487eae357460bb98f67d86230c218.jpg, createdBy=ab235268530, createdName=神盾医疗局局长Jack, createdTime=Wed Apr 21 08:44:35 CST 2021, time=2021-04-21, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1884203, encodeId=a5ad188420300, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=67, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Mon Apr 06 02:14:39 CST 2020, time=2020-04-06, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1951126, encodeId=6e27195112602, content=<a href='/topic/show?id=580a89302c6' target=_blank style='color:#2F92EE;'>#血液测试#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=72, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=89302, encryptionId=580a89302c6, topicName=血液测试)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=e12a151, createdName=yangeasy, createdTime=Sun Feb 07 23:14:39 CST 2021, time=2021-02-07, status=1, ipAttribution=)]

相关威廉亚洲官网

林根教授谈新冠肺炎疫情逐步控制下肺癌患者的诊疗建议,推荐合适的患者接受口服抗肿瘤药物治疗

一场突如其来的新型冠状病毒疫情席卷中华大地,给肺癌患者的诊疗带来了极大不便。在国家强有力领导下,疫情得以逐步控制,多地出现连续零新增病例的情况。在疫情得到逐步控制的情况下,相信肺癌患者的诊疗也会进入正

Sci Rep:EGCG纳米乳剂对肺癌细胞有抗癌作用

纳米-EGCG的这一新机制表明其可应用于肺癌的预防和治疗。

战“疫”关键期,肺癌患者如何做到“治疗不中断,染病低风险”?

新冠肺炎牵绊着全国人民的心,根据最新研究数据表明,重症患者主要为老年、合并有其他疾病以及免疫力低下的患者。肺癌患者相比正常人免疫力低下,而且还需要反复出入医院进行治疗和病情监测,增加感染的风险,一旦感

肺癌新疗法!“双特异性疗法”获美国FDA突破性药物资格!

近日,美国FDA授予双特异性疗法JNJ-6372(JNJ-61186372)“突破性疗法”认定,用于经含铂化疗后病情进展、携带表皮生长因子受体(EGFR)20外显子插入突变的转

Sci Rep:VI型胶原蛋白α5基因变异可预测中国汉族人群罹患肺癌的风险

COL6A5多态性rs13062453、rs1497305和rs77123808与中国汉族人群的肺癌风险相关。

Thorax:一种预测肺结节恶性程度卷积神经网络人工智能工具的外部验证

与布鲁克模型相比,LCP-CNN评分具有更好的辨别力,可以识别更多的良性结节而不会遗漏癌症。

拓展阅读

杨农教授:肺癌双抗疗法的精准化治疗与动态监测策略 | 中国肺癌高峰论坛

特邀湖南省第二人民医院 杨农教授来分享肺癌双抗疗法的新进展和新趋势。

陈元教授:生存期翻3倍!这些国产肺癌ADC疗法正改写治疗规则 | 中国肺癌高峰论坛

特邀请华中科技大学同济医学院附属同济医院 陈元教授来分享肺癌ADC疗法的新进展和新趋势。

问诊反馈:影像挺典型像恶性的混合磨玻璃结节,为何却不是肺癌?这点很重要!

37 岁男性因咳嗽检查发现右肺下叶背段混合磨玻璃结节,影像似恶性但有呼吸道症状,建议消炎后复查,患者提前复查结节吸收,表明炎症恢复期结节与肺癌影像易混淆,随访可鉴别。

罕见病例:年仅12岁,左侧磨玻璃结节已经手术证实微浸润性腺癌,右侧仍有考虑原位癌的!到底是什么原因导致的?

群里展示 12 岁孩子患肺微浸润性腺癌及原位癌病例,AI 分析潜在病因、病变机制等,作者认为其未说到点子上,认为可能是多种综合因素致肺磨玻璃结节或肺癌,农药等或为重要因素。

问诊分析:这肺结节毛刺、牵拉,四个月做了4次CT、1次PET多报恶性,还加穿刺!但我缘何认为几不可能是肺癌!

36 岁女性发现左肺下叶实性结节,历经多次检查未确诊。作者经影像分析,判定为良性慢性炎,反驳当地再穿刺建议,强调随访观察即可,并对比炎性与肿瘤结节影像特征。

97%患者肿瘤缩小,疾病控制率达99%!上海市胸科医院陆舜团队领衔:ADC为肺癌患者带来新选择

HER2突变型NSCLC后线治疗选择有限。陆舜教授团队开展的HORIZON-Lung试验显示,瑞康曲妥珠单抗治疗该类患者客观缓解率达73%,安全性可控,为其提供新选择,且已启动3期临床研究。